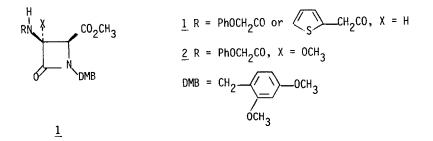
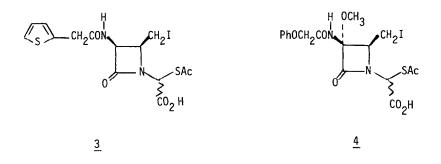
NUCLEAR ANALOGS OF B-LACTAM ANTIBIOTICS 8.

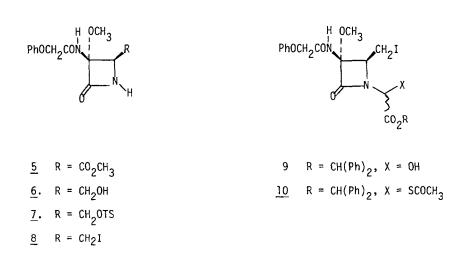
STEREOSPECIFIC SYNTHESIS OF A C-3 METHOXYLATED MONOCYCLIC B-LACTAM¹

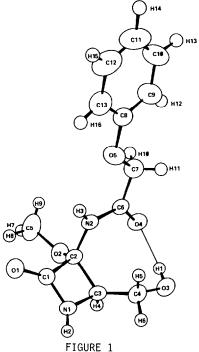

Robert M. DeMarinis and William M. Bryan*


Research and Development Division Smith Kline and French Laboratories Philadelphia, Pennsylvania 19101

Methoxylation of $1(R = PhOCH_2CO)$ occurred stereospecifically from the α -face as determined by x-ray crystallography to provide 2 which was converted to 4 whose <u>in vitro</u> antimicrobial activity was determined.

The 7- α -methoxy cephalosportns were discovered independently by two groups in the early 1970's as naturally occurring fermentation products from Streptomyces.^{2,3} Extensive studies on semisynthetic cephamycins derived from them showed that these antibiotics often demonstrated an expanded spectrum of activity against certain Gram-negative organisms as well as an increased stability to β -lactamase relative to their unmethoxylated counterparts.^{4,5,6} Recently, there has been a large amount of research which has resulted in the total synthesis of various β -lactam nuclear analogs.¹ The isolation of an α -methoxy β -lactam monocycle from a bacterial fermentation⁷ has also been reported within the last year. In light of the improved biological properties conferred on some β -lactam antibiotics by an α -methoxy group, we decided to investigate the synthesis of an α -methoxy nuclear analog of a totally synthetic biologically active β -lactam monocycle.


The cis-amido- β - lactam $\underline{1}^8$ is a key intermediate in the synthesis of some biologically active penicillin and cephalosporin analogs. Monocycles such as 3 exhibit in <u>vitro</u> activity against Gram-negative bacteria comparable to thienylpenicillin.¹ In this communication, we report the stereospecific synthesis of the α -methoxy β -lactam 2 and its conversion to 4.



The cis-azetidinone <u>1</u> (R = PhOCH₂CO) was treated with 3.5 equiv. of lithium methoxide in tetrahydrofuran at -40° for 5 min. followed by 1 equiv. of tert-butyl hypochlorite. After stirring for 60 min. and quenching with acetic acid, it afforded α -methoxy- β -lactam <u>2</u> as a gum.⁹ Without intermediate purification, the β -lactam nitrogen of <u>2</u> was deblocked oxidatively with buffered persulfate¹⁰ to afford after chromatography on silica <u>5</u> (29% from <u>1</u>). Selective reduction of the ester with 10 equiv. of sodium borohydride in methanol gave alcohol <u>6</u>, (79%).¹¹

Analogy to the methoxylated cephalosporins which have been prepared in a similar fashion would suggest that the acylimine of <u>1</u> (R = PhOCH₂CO) should undergo Micheal addition of methanol from the α -face if the steric effects of the 4- β -carbomethoxy and 1-aryl substituents are as great as those of the fused dihydrothiazine ring of cephalosporins. Nuclear Overhauser studies performed on <u>5</u> were not conclusive as to the stereochemistry at C-3. An x-ray crystallo-graphic study on 6 was performed.¹²

The crystallographic data indicated that the methoxylation had occurred from the α -face. Figure 1 shows a computer generated ORTEP stereoview of 6.

Treatment of the alcohol 6 with 1.1 equiv.tosyl chloride in dry pyridine at 0^{0} for 4 h afforded 7 as a slightly unstable oil which was immediately converted with dry sodium iodide in refluxing acetone for 6h to iodide 8 (45%). The iodide 8 was treated with 1 equiv. of benzhydrylglyoxylate and triethylamine in dioxane over 4Å molecular sieves for 4 h to provide hydroxy iodide 9 (44%) as a mixture of carboxylate epimers. This mixture was converted with 1.5 equiv. of thionyl chloride and 1.5 equiv. N,N-diethylaniline in dry methylene chloride at -10° to an unstable chloride which was treated in situ with 5 equi. of potassium thioacetate in DMF at -10° for 5h to provide after preparative TLC, thioacetate 10 as a mixture of epimers (11% from 9) IR (CHCl₂) 5.60 (β -lactam), 5.72 (ester), 5.86 (thioacetate), 5.93 nm (amide), NMR (CDCl₂) δ2.43, 2.44 (3H,2s,SCOCH₃),3.55 (3H,s,OCH₃), 4.00-4.17 (1H,m,C-4 H), 4.54, 4.55 (2H,2s,PhOCH_CO), 6.13, 6.37 (1H,2s,CHCO_) 6.84, 6.85 (1H,2s,CO₂C<u>H</u>Ph₂), 6.90-7.38 (15H,m), m/e

FIGURE I

689 $(M+H)^+$, 560. The thioacetate ester was converted to <u>4</u> with cold trifluoracetic acid (40%) IR (CH_2Cl_2) 5.67 $(\beta$ -lactam), 5.73 (acid), 5.89 (thioacetate), 6.07 nm (amide) NMR (CDCl_3) 62.32 (3H,s,SCOCH_3), 3.45 (3H,s,OCH_3), 4.00-4.20 (1H,m,C-4<u>H</u>), 4.65 (2H,s,PhOCH_2CO), 5.96 (1H,s,C<u>H</u>CO_H), 6.65-7.40 (1H,s,C<u>H</u>O), m/e 394 (M-HI)⁺.

Compounds <u>4</u> and <u>10</u> were tested for <u>in vitro</u> antimicrobial activity. Both α -methoxy β -lactam acid and ester had activities lower than those found for the corresponding compounds unsubstituted at C-3.

<u>ACKNOWLEDGEMENT</u> We are grateful to J. Guarini for the <u>in vitro</u> testing and D. Staiger for the Nuclear Overhauser study.

REFERENCES AND NOTES

 For previous references in this series see J. G. Gleason, T. F. Buckley, K. G. Holden, D. B. Bryan and P. Dandridge, <u>J. Amer. Chem. Soc.</u>, 101 4730 (1979) and J. G. Gleason, D. B. Bryan. and K. G. Holden Tetrahedron Letters, in press.

- R. Nagarajan, L. D. Boek, M. Gorman, R. L. Hamill, C. E. Higgins, M. M. Hoehn, W. M. Stark and J. G. Whitney, <u>J. Am. Chem. Soc.</u>, 93, 2308 (1971).
- E. O. Stapley, M. Jackson, S. Hernandez, S. B. Zimmerman, S. A. Currie, S. Markales, M. Mata, H. B. Woodruff and D. Hendlen, Antimicr. Agents and Chemoth., 2, 122 (1972).
- 4. H. C.Neu, Antimicr. Agents and Chemoth., 6, 170 (1974).
- 5. H. R. Onishi, D. R. Daoust, S. B. Zimmerman, D. Hendlen and E. O. Stapley, <u>Antimicr</u>. <u>Agents</u> and <u>Chemoth</u>. 5, 38 (1974).
- J. V. Uri, P. Actor, J. R. Guarini, L. Phillips, D. Pitkin, R. M. DeMarinis and J. A. Weisbach, J. Antibiot., 31, 82 (1978).
- 7. A. Imada, K. Kitano, K. Kintaka, M. Muroi, M. Asai, Nature, 289, 590 (1981).7.
- W. F. Huffman, K. G. Holden, T. E. Buckley, III, J. G. Gleason and L. Wu, <u>J. Am. Chem. Soc.</u>, 99, 2352 (1977).
- 9. This is a modification of a procedure for the synthesis 7- -methoxycephalosporin-C,
 G. A. Koppel and R. E. Koehler, <u>J. Am. Chem. Soc</u>., 95, 2403 (1973).
- 10. H. L. Needler and R. E. Whitfield, J. Org. Chem., 29, 3632 (1964).
- 11. Satisfactory combustion analyses were obtained for compounds 5 and 6. Compound 10 displayed a parent ion at m/e 688 that was too weak for an exact mass measurement. However, m/e 560 corresponding to $(M-HI)^+$ gave 560.1658 (calc'd for $C_{30}H_{28}N_2O_7S$ 560.1617).
- 12. The crystal structure was performed by Molecular Structure Corporation, College Station, Texas. Supplementary x-ray material has been submitted for deposition at the Cambridge Crystallographic Data Center.

(Received in USA 19 November 1980)